
A model at any of  these levels should be open, i.e., the mathematical formalization should allow one to incorporate 
additional units that either describe different processes or else refine the couplings between elements. Also, the mathematical 
techniques and the logic of  the couplings should provide, if necessary, for combining models at the different levels in 
application to any particular system. 

NOTATION 

T, temperature; r, spatial coordinate; n, normal; t, time; X, thermal conductivity; p, density; cp, specific heat; c m , 
mass heat capacity of  a lumped element; kij , conductivity between elements i and j of  model; %, source function; qext, 
heat flux from the surroundings to the element; %0, heat flux characterizing thermal interaction of  elements; Dj, space 
region corresponding to element j of model; F,, boundary of  Di; Pex t and P~t'  sets of  external and internal boundaries; N 
and N ,  numbers of  distributed and lumped efements; subscripts: i, j, model element; a, lumped element. 

CONCEPTUAL ALGORITHMS FOR ANALYSIS OF 

EXPERIMENTAL DATA 

M. R. Romanovskii UDC 536.24.083 

A study is made of process simulation in inverse situations. Some problems arising in this approach are 
discussed, and a study is made of the choice of  solution form, as well as of  solution technique. 

An important aspect of computer assistance in thermophysical research is to design algorithms for interpreting 
results; inverse treatments are often involved [ 1, 2]. In the treatment of experimental data, one often has to determine the 
causes of an observed effect, and inverse treatments provide a basis for analysis, which involves concepts in the interpreta- 
tion of  data. In practice, one often has the necessary information on the object in the form of models for conservation 
laws. Incorporation of  a model into an analysis algorithm provides for more profound study of  the structure and relevant 
factors. The corresponding algorithms may therefore be called conceptual, since the analysis is performed by inverse 
simulation. Simulation involves transfer from a general functional description to some particular description, which 
distinguishes this approach from other ways of  solving inverse problems. In other words, conceptual algorithms presuppose 
the solution of  more general problems, in which the formalization applies to the model and not to the initial data. The 
result is a model for an experiment that can provide characteristics of  the process that are not accessible to direct observa- 
tion, including the dynamic behavior of  the object and so on. 

We now consider ways of  designing conceptual algorithms. We assume that we have chosen a model 

L~u = f, (1) 
and some observations are given 

U6 ~ - t -  8 

with a known value for the norm of the deviation from the true value: 

Ilu 6 - -u t [  ~<~. (2) 

In the choice of the model of  (1) it is assumed that there exists a solution u6U that is unique in some metrical space U 
and that is continuously dependent on the initial data a~I-I and [~F . 

The model of ( I)  is the result of  formalizing the process, so some of  the parameters may be unknown or may differ 
from the actual object parameters. If  appropriate a priori estimation is difficult, these parameters may be included in a 
vector a. Then the conceptual processing amounts to simultaneous determination of  the state function u~ U that satisfies 
the model throughout the relevant region of the independent variables together with the unknown parameters in metrical 
space H, which is the space of  vector a. The latter requires additional information, where condition (2) is used. 

In the construction of  such a solution, it may happen that the result is not unique or that the solution is unstable. 
In the first case it is then necessary to establish a one-to-one correspondence between the desired quantities and the given 
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sample, which enables one to recover the causes from the effect. In the second case, it becomes lJecessary to determine 
why the solution is not  continuously dependent on the initial data. In such a case one should search for a method that 
can be applied to a broad class of inverse problems with varying levels and distributions for the errors of  measurement, and 
which also allows one to convert from a general functional representation to a particular form. These specifications are 
met by regularization as described below. 

We assume that the condit ions for one-to-one correspondence are met  and reduce the problem to 

Sa = u 6 , (3) 

where S is an operator  that  performs a mapping from H to U and which is specified inexplicitly by the form of  model (1). 

The errors of  observation e mean that  the solution to (3) is unstable. Then the general theory of regularization [3] 
indicates that  the solution must be sought in a space with a norm not  weaker than the norm of the observation space. In 

practice, observations consti tute a discrete set u ~ _s , ,~ .~i- : '~  --t,~,~J,._~:: at n points of  measurement for each of  the m points of  

observation. Such samples may correspond to a space with a Euclidean norm. Therefore a stable algorithm for solving (3) 
for real number spaces, when H = E p, may be based on the following regularization: 

rnin max l a g  
aeE p k~[1 ,p] (4) 

tz 

i = l ,  m, 
]=1  

where u is a function that satisfies model  (1) with given a, i is the number of  the observation point, and j is the instant of  
measurement. 

Regularization can be performed as follows if another form is chosen for the error of measurement, e.g., the maxi- 
mum deviation from the true value: 

rain max lak[, 
a c E  p /~[1  ,p] 

max lu~i-- uijI K 6  i, 
1r .n] 

i ~ 1,m . 

(5) 

Therefore, conceptual analysis of  models in which the unknown parameters are independent of  the state function 
can be performed via the minimax problems of  (4) or (5), in which one defines an element in the space of real numbers in 
conformity with the error of  the input  data. The criterion in (4) and (5) is the stabilizing functional 

f~ [al = max [akl, 
k 

and the 6 i denote the estimate of  the error of  measurement for element i in the observation set. Any change in the error 
est imator for a given set is reflected in the form of  the coupling conditions, while the general mode of  solution remains 
unchanged: 

rain f2[a], 
aE H 

Ilu~--uill~Si, i = l,---m, 

(6) 

where H i is the value of  the solution to (1) at the point  of  observation i and II-tl is the norm corresponding to the form of  
the measurement-error estimator. 

Other regularization schemes have been proposed [4, 5], but  they differ in that the formulation of (6) is based on 
a particular use of  the elements from the observation set u s , and a match is made to the error of  the input data at each 
observation point  separately, not  via the overall dispersion. This reflects the form of  observation common in practice. On 
the other  hand, the formalization of  (6) demonstrates a general approach to determination of  the coefficients in the 
equation and to the condit ions at the boundaries of  the object. 

This approach may be demonstrated in the solution of the following model  problem. We assume that a physical 
process is described by the boundary-value problem 

Ou 1 02u  - 
o t  - 2 -  Ox ~ + x + t -  x2' xC(O, 1), tC(o, T), (7) 
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u) t=o=x  z, ulx=o= t, u-]x~l= l q- t. 

Simulation of the observed values for the state function is provided by specifying the quantities 

for which we know the deviations 

u ~ j = u ~ j + s ~ j ,  i = l ,  m, l = l ,  n, 
(8) 

o r  

rt 

62' = 2  (u~i--uii)~., i = 1, m (9) 

= maxiun- -  ui~l, i = 1,m, (10) 
i~[] ,n] 

where ei~ are normally distributed random numbers of zero mathematical  expectation. In practice, such estimators can be 
found by various means of  statistical processing. A methodical  study may be made of  the numerical features of  these 
algorithms by determining the 8 i from (9) and (10) in relation to the function 

u =  t q- x t  + x 2 - -  x2t, (11) 

which is the exact solution to (7). 

The resulting sample of the form of (8) will be analyzed by means of  a four-parameter model  as follows over the 
following observation parameters: m = 4, n = 10, and T = 1: 

a j  - -  
Ou 02u Ou 

ao - -  + a3 + a ~ u +  x + t - - x  2, xC(O, 1), IE(0, T), 
Ot " Ox z ~ (I  2) 

u h = 0 = x  z, u lx=0=t ,  u l x = ~ = l §  

The choice of  the model  of (12) is not unique. One could use various other models that express the corresponding 
concepts. However, the same significant factors must always appear in the particular choice of  model. 

We do not  propose to discuss in detail the uniqueness of the coefficients and merely note that one can demonstrate 
an unambiguous correspondence between the coefficients of  (I  2) and the function of (11). 

The solution to the problem of (12) with given values for the coefficients may be determined by a finite-difference 
method via a spatially centered Crank-Nicho l son  scheme. The penalty-function method enables one to reduce (4) and (5) 
to a problem in unconditional programming, in which a search is made coordinate by coordinate. 

Table 1 represents results of identification of  the model  of  (12) and shows that these regularization schemes can 
provide satisfactory solutions no mat ter  whether the measurement dispersion is small or large. Further,  scheme (5) gives a 
more accurate estimate of  the model structure than does (4). Scheme (4) provides poor accuracy in the identification if  
the noise dispersion is large. In that case, a comparison can be made of the temperature discrepancies arising from the 
errors of  measurement, and it is found that the solution has poor  consistency in the observations, with the discrepancies 
much larger than the corresponding 6 i. We therefore consider the formulation 

rain max }ahl, 
t tGE p k~[l ,p] 

= 6 i - -  1 . z ,  

/ = i  

which provides improved accuracy. 

One can specify the errors approximately in terms of  the upper limit 

6 = nax lu~ l~jl 
. . ] 
z , f  

but this involves deterioration in the identification accuracy. In that case the spread in the errors in the observation set 
around the mean value is important.  For  noise dispersions a 2 = 10 -4 , one can simulate a single measurement, whereas five- 
fold measurements are required for a :  = 10 -2 . 
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TABLE 1. Solution Results 

~oise ReKulati- 
isper- za~mn t~ror estimator 8 Result for vector a 

slog scheme 

o=0,01 

o=0,1 

(4) 
(5) 
(5)* 
(4) 
(5) 
(5)* 

0,0015; 0,00115; 0,00105; 0,00109 
0,0353; 0,0151; 0,0197; 0,0153 
0,0353; 0,0353; 0,0353; 0,0353 
0,0222; 0,0122; 0,0057; 0,0166 
0,0996; 0,0888; 0,0418; 0,0706 
0,0996; 0,0996; 0,0996; 0,0996 

0,986; 0,464; 0,111; ,.--0,093 
0,992; 0,483; 0,061; mO,O18 
0,381; 0,846; --0,459; --0,124 
0,506; 0,447; --0,442; --0,105 
0,984; 0,446; 0,113; --0,091 
0,791; 0,378; --0,239; 0,0756 

*The upper limit of the error is specified. 

~7 

�9 i 

~i , J  ~ ~ �9 

o 0,2 o,~ o,s o,8 

Fig. 1. Values of the heat-transfer coefficient: a) exact 
value; b, c) formulations of (4) and (5) respectively; and 
d) least squares. 

These regularization schemes were compared on a sample u ~ with dispersion 02 = 10 -4 , with least-squares processing. 
The resulting vector was a = (0.806; 0.375; 0.017; -0 .235)  and the accuracy in identifying the model of  (7) was worse than 
that in regularization. 

We now consider some applications of the simulation results. We perform a prediction starting from t = T and 
extending up to t = 10T for the dynamic behavior of an object identified from sample u ~ with dispersion o 2 = I0 "r ; in 
that case, the maximum deviation of the predicted state from the true state in (4) and (5) and in the least-squares method 
was, respectively, 0.1271, 0.1047, and 0.1285, which consti tuted 0.98, 0.79, and 1.04% of the value of u in each case. 

This solution to the inverse problem also allows one to solve the common practical problem of  estimating the heat- 
transfer coefficient from temperature measurements. Figure 1 Shows values for this coefficient derived from 

O U  x = 0  Ox 
05 .~- a 2 

Ulx=O-Uamlx=o' 

where Uaml~=0=0 is a known temperature.  

Therefore, the program package for the simulation involving inverse treatments can provide general models for 
experiments;  in particular, it is possible to construct analysis algorithms that reflect the details of  the process. The results 
show that  common forms of  error est imator (including unsmooth ones) can be used. These can improve the evaluation of  
the model structure. This approach may prove efficient and fruitful in research on complex processes. 

NOTATION 

La, model;  a, unknown parameter vector; u, function describing process; u ~, observed values; u, true state; e, 
measurement  error; 6, norm of uncertainty;  f, effect; U, H, F,  metric spaces; T, upper limit of measurement;  Uam , ambient 
temperature. 

850 



LITERATURE CITED 

1. A.N. Tikhonov, "Inverse problems in thermal conduction," Inzh.-Fiz. Zh., 2_9, No. 1, 7-12 (1975). 
2. B.M. Pankratov, "Some problems in the thermal design of flying vehicles and experimental processing," Inzh.-Fiz. 

Zh., 33, No. 6, 967-971 (1977). 
3. A.N. Tikhonov and V. Ya. Arsenin, Methods of Solving Incorrectly Formulated Problems [in Russian], Nauka, 

Moscow (1974). 
4. V.A. Morozov, "Stability in parameter determination," in: Computational Methods and Programs [in Russian], Issue 

14, Moscow State Univ., Moscow (1970), pp. 63-67. 
5. L. Carotenuto, G. Raiconi, and G. Di Pillo, "On the identification of a variable coefficient in diffusion equation," in: 

Identification and Estimation of System Parameters [in Russian], Part 3, Tbilisi (1976), pp, 174-194. 

A METHOD OF PROCESSING THE READINGS OF A 

GRAPHITE CALORIMETER 

A. M. Bespalov, M. I. Gorshkov, Yu. S. Karasov, A. I. Maiorov, 
B. A. Mukhin, and N. S. Tskhai UDC 536.24.083 

A quasi-solution method has been applied to a nonlinear inverse problem in thermal conduction to process test 
data for a graphite calorimeter in a plasm a jet. 

Inverse problems in thermal conduction occur in experimental aerodynamics, particularly for heat transfer to models 
in wind tunnels, e.g., in relation to the testing of thermal shields and high-temperature constructional materials. These 
inverse problems have to be considered when it is necessary to calculate the temperature pattern in a model while the 
parameters of the external flow and the boundary conditions are not well established, e.g., in measurements on the non- 
stationary heat transfer from a high-temperature jet. A graphite calorimeter is used for the purpose here. 

The calorimeter (Fig. 1) is a cylindrical graphite vessel having a flat bottom, into which is screwed a sensitive element 
of thickness 0.017 m and diameter 0.04 m. There are three Chromel-Alumel thermocouples of thickness 8 • 10 - s m  
inserted in the sensitive element near the center on the inside. The thermocouples are attached by contact welding to a 
layer of zirconium of thickness 10 -4 m melted onto the graphite in a vacuum furnace. 

The solution of the inverse problem for the graphite is complicated because the parameters are very much dependent 
on temperature, so the treatment is nonlinear. A stable solution is found by the quasisolution method [ 1-3]. One has to 
determine the heat-flux density from the temperature variation at the internal surface, which involves a nonIinear problem 
in thermal conduction for a one-dimensional wall in the following formulation: one is given a parametric compact family 
K of functions q(r), from which one selects a time function for the heat flux qw(r) such that the theoretical time function 
for the temperature Tt(r) at the internal surface of the wall corresponds best with the measured result T m (r), i.e., qw(r) is 
defined by the condition 

max IAqw (-Q - -  Tm(T)I = inf maxi Aq('Q - -  Trn(~)l, 
0-<.'t:~<'rra a x K 0~T-<-~max 

where A is the finite-difference operator for the direct nonlinear thermal-conduction problem: 

Aq("c) -~ Tt (~), 0 ~ T "~ TmaX. 

The uniformly bounded and equally continuous parametric families of functions are compact in the space of continuous 
functions with a uniform-approximation metric. The heating conditions are close to those of regular modes, so the compact 
set is taken as a two-parameter family of exponential functions: 

K ~--- (q(~) : q(~) O exp (--  m'Q, Qmi~--~O-~O,,,~, 

The choice of the set in this form is justified by the good agreement between the theoretical result Tt(0 and the measured 
o n e  T m ( 0  (Fig. 2). 
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